TWO SESQUITERPENE LACTONES FROM CENTAUREA CANARIENSIS*

Antonio G. González, Jaime Bermejo, Inmaculada Cabrera, Guillermo M. Massanet, Horacio Mansilla and Antonio Galindo

Instituto de Productos Naturales Orgánicos, CSIC, Tenerife; Departamento de Química Orgánica, Universidad de La Laguna, Spain

(Revised received 24 November 1977)

Key Word Index—Centaurea canariensis; Compositae; sesquiterpene lactones; aguerin A and B; cynaropicrin; deacylcynaropicrin; guaianolides.

Abstract—From the aerial part of Centaurea canariensis three sesquiterpene lactones were isolated: cynaropicrin, deacylcynaropicrin and aguerin A. The same species, grown from seed, yielded cynaropicrin, deacylcynaropicrin and aguerin B. The guaianolides aguerin A and B are reported for the first time. Aguerin B was subsequently found to be present in Centaureana linifolia, C. canariensis (var subspinnata) and C. sventenii.

INTRODUCTION

As part of our research into sesquiterpene lactones from the Compositae, we studied the composition of Centaurea canariensis, a plant endemic to the Canary Islands. Four sesquiterpene lactones were isolated from this plant, two of which were already known: cynaropicrin [1] and deacylcynaropicrin [2]; the other two were new guaianolides and were named aguerin A and B.

RESULTS AND DISCUSSION

Aguerin A (1a) was obtained as an oil: C₁₉H₂₄O₅; MS m/e 332 (M⁺) [α]_D +89°; IR cm⁻¹ 3470 (hydroxyl), 1760 (α-methylene-γ-lactone), 1720 (ester) and 1635 (methylene double bonds). The ¹H-NMR displays two doublets at δ 6.22 and 5.62 (2H, J = 3 Hz) characteristic of a =CH₂ group conjugated with the lactone CO, four signals at δ 5.12, 4.94 (2H, J = 2 Hz), 5.50 and 5.39 (2H, J = 2 Hz) due to two terminal methylene double bonds at C-10 and C-4 respectively. A signal at δ 1.20 (6H) was assigned to the methyls of an isopropyl group. The presence of this last group in the ester was confirmed by MS: m/e 244 (M⁺-C₄H₈O₂) and m/e 71 (C₄H₇O). Compound 1a was treated with Ac₂O-Py to give the monoacetate (1b) in the form of an oil: C₂₁H₂₆O₆; (no M^{+}) m/e 226 (M^{+} -148) (M^{+} - $C_{4}H_{8}O_{2}$ - $C_{2}H_{4}O_{2}$), $[\alpha]_{D}$ $+120^{\circ}$.

In order to relate aguerin A with a product of known structure, it was subjected to NaBH₄ reduction yielding 2: mp 201–204°; $C_{19}H_{26}O_5$; MS m/e 334 (M⁺), $[\alpha]_D$ +64°. Saturation of the double bond conjugated with the lactone group had taken place in this compound. This was reflected in its ¹H-NMR spectrum by the absence of signals characteristic of the olefinic proton of the α -methylene- γ -lactone group and the appearance of a doublet at δ 1.16 (3H, J=7 Hz) due to a methyl group α to the lactone carbonyl group. Compound 2 was identical to 3β -hydroxy-8 α -isobutyryloxyguaian-4(15), 10(14)-dien-6,12-olide obtained by zinc-copper couple

reduction of chlorohyssopifolin A [3]; structure 1a proposed for aguerin A was thus confirmed.

A second batch of *Centaurea canariensis*, grown from the seeds of the wild plant, showed no trace of aguerin A. However, together with cynaropicrin and deacylcynaropicrin, a new substance was isolated as an oil and called aguerin B.

Aguerin B (3), $C_{19}H_{22}O_5$, MS m/e 330 (M⁺), $[\alpha]_D$ +96° displayed IR bands at cm⁻¹ 3590 (hydroxyl), 1760 (α -methylene- γ -lactone), 1710 (α , β -unsaturated ester) and 1635 (methylene double bond). Its ¹H-NMR spectrum had signals characteristic of three methylene groups, δ 6.22 and 5.62 (C-13, J=3 Hz), 5.12 and 4.94 (C-14, J=2 Hz) and 5.40 (C-15, J=2 Hz), and of methacrylic group protons, δ 6.22 and 5.65 plus a singlet at 1.95. The MS also showed this latter group, (prominent peaks at at MS m/e M⁺-C₄H₆O₂ and m/e 69 (C₄H₅O). Oxidation of aguerin B gives a dehydroderivative, $C_{19}H_{20}O_5$, MS m/e 328 (M⁺); $[\alpha]_D + 91^\circ$; cm⁻¹ 1725 (α , β -unsaturated cyclopentenone); UV λ_{max} 215 nm, which confirmed the presence of a secondary hydroxyl group at C-3.

NaBH₄ reduction of aguerin B led to the formation of the dihydroderivative 4 as an oil: $C_{19}H_{24}O_5$, MS m/e 332 (M⁺); $[\alpha]_D$ +35°; identical to 3 β -hydroxy-8 α -methacryloyloxyguaian-4(15),10(14)-dien-6,12-olide [3], thus firmly establishing the structure of aguerin B as 3.

Aguerin B was later isolated in this laboratory from Centaurea linifolia (0.008% yield) C. canariensis (var. subspinnata) (traces) and C. sventenii (0.025% yield).

EXPERIMENTAL

Mps were determined on a Kofler block and are uncorr. Optical activities were measured in CHCl₃, UV spectra in EtOH and ¹H-NMR spectra on a 60 MHz instrument in CDCl₃ with TMS as int. ref.

Extraction and isolation. The aerial part of Centaurea canariensis (3 kg), collected at La Laguna (Tenerife) in April-May 1977, was triturated, exhaustively extracted with hot EtOH and worked up in the usual manner [4]. The resulting extract (60 g) was first chromatographed on a column of Si gel then on Si gel impregnated with AgNO 3 (20%); both columns were eluted with C_6H_6 -EtOAc (1:1).

Aguerin A (1a). This product was purified by PLC and eluted

^{*} Part 36 of the series 'Constituents of the Compositae'. For Part 35, see: González, A. G., Bermejo, J., Amaro, J. M., Massanet, G. M., Galindo, A. and Cabrera, I. (1978) Can. J. Chem. in press.

$$R_1O = 3$$
 $\frac{1}{15}$
 $\frac{1}{15}$
 $\frac{1}{10}$
 $\frac{1}{10}$

with C_6H_6 -EtOAc (1:1) giving 300 mg oil (0.01% yield) which could not be crystallized: MS m/e 332 (M*); $[\mathbf{z}]_D + 89^\circ$ (ca 0.14); IR $\nu_{\text{min}}^{t,\text{lm}}$ cm $^{-1}$: 3470, 1760, 1720 and 1635; NMR: δ 6.22 and 562 (2H, dd, J = 3 Hz, C-13), 5.12 and 4.93 (2H, dd, J = 2 Hz, C-14), 5.50 and 5.39 (2H, dd, J = 2 Hz, C-15) and 1.20 (6H, s, —CH(Me)₂) (Calc for $C_{19}H_{24}O_5$: C, 68.66; H, 7.28 Found: 68.37; H, 7.12%).

Monoacetylaguerin A (1b). A mixture of aguerin A (40 mg), C_5H_5N (2 ml) and Ac_2O (2.5 ml) was left for 12 hr and the monoacetate recovered as an oil: MS m/e: (no M⁺), 226 (M⁺- $C_4H_8O_2$ — $C_2H_4O_2$); [α]_D +120° (ca 0.1); [1R $y_{max}^{CHL_{13}}$ cm⁻¹: 1770, 1730, 1640 and 1240; NMR. δ 6.22. 5.61 (2H, dd, J = 3 Hz, C-13), 5.60. 5.38 (2H, dd, J = 2 Hz, C-15), 5.11, 4.98 (2H, dd, J = 2 Hz, C-14) and 2.10 (3H, s, —COOMe).

 $NaBH_4$ reduction. About 100 mg of aguerin A (1a) was dissolved in MeOH (5 ml), NaBH₄ (285 mg) being added, and the mixture was stirred at 0° for 10 min. The MeOH was then eliminated and the residue was acidified with 0.1 N HCl. It was extracted with EtOAc and crystallized with EtOAc-petrol: mp 201-204°; MS m/e: 334 (M⁺); $[\alpha]_D$ +64° (ca 0.12); NMR: δ 5.30 (2H, d, J = 2 Hz, C-15), 5.12, 5.00 (2H, dd, J = 2 Hz, C-14), 1.22 (6H, s, CH(Me)₂) and 1.16 (3H, d, J = 7 Hz, C-15. Me).

Aguerin B (3). From a second batch of C. canariensis, treated in the same way as the first, an oil $(0.02\,^{\circ}_{00}$ yield) was isolated identical with aguerin A by chromatography but with different physical constants and spectroscopic data: MS m/e: 330 (M⁺); $[\alpha]_{\rm D} + 96^{\circ}$ (ca 0.17); IR $_{\rm VBC^{13}}$ cm⁻¹: 3590, 1760, 1710 and 1635; NMR: δ 6.22, 5.62 (2H, dd, J = 3 Hz, C-13), 6.22, 5.65 (2H, dd.

J=2 Hz, C-17 = C \underline{H}_2), 5.40 (2H, d, J=2 Hz, C-15), 5.12, 4.94 (2H, dd, J=2 Hz, C-14) and 1.95 (3H, s, C-17- \underline{Me}).

Dehydroaguerin B. Ca 200 mg of 3 was dissolved in Me₂CO (30 ml) and cooled in ice. While the mixture was continually stirred, Jones reagent was added in drops to slight excess and stirring continued for a further 15 min. The excess reagent was eliminated with MeOH and it was extracted as usual yielding an oily-looking residue: MS m/e 328 (M⁺): $[\alpha]_D + 91^\circ$ (ca 0.75): UV λ_{max} nm: 215 (log $\varepsilon = 4.16$); IR $v_{max}^{CHC_{13}}$ cm⁻¹: 1760, 1725 and 1640; NMR; δ 6.30, 5.70 (2H, dd, J = 2 Hz, C-17—CH₂), 6.30, 5.70 (2H, dd, J = 3 Hz, C-13), 5.88 (2H, d, J = 2 Hz, C-15), 5.08, 4.90 (2H, dd, J = 2 Hz, C-14) and 2.01 (3H, s, C-17-Me)

 $NaBH_4$ reduction. Aguerin B (120 mg) dissolved in MeOH (5 ml) was treated with NaBH₄ as for aguerin A above. A non-crystalline product was obtained: MS m/e 332 (M⁺); $[\alpha]_D + 35^\circ$ (ca 0.18); NMR: δ 1.25 (3H, d, J = 8 Hz, C-15. Me).

REFERENCES

- Corbella, A., Gariboldi, P., Jommi, J., Samek, Z., Holub, M., Drodz, D. and Bolszyk, E. (1972) J. Chem. Soc. Chem. Commun. 386.
- González, A. G., Bermejo, J., Massanet, G. M and Pérez, J. (1973) Anal. Quim. 69, 1333.
- González, A. G., Bermejo, J., Bretón, J. L., Massanet, G. M., Domínguez, B. and Amaro, J. M. (1976) J. Chem Soc. Perkin I 1663
- González, A. G., Bermejo, J., Massanet, G. M., Amaro, J. M. and Domínguez, B (1975) Phytochemistry 15, 991.